The Fuglede-Putnam theorem for (p,k)-quasihyponormal operators
نویسندگان
چکیده
منابع مشابه
An Asymmetric Putnam–fuglede Theorem for Unbounded Operators
The intertwining relations between cosubnormal and closed hyponormal (resp. cohyponormal and closed subnormal) operators are studied. In particular, an asymmetric Putnam–Fuglede theorem for unbounded operators is proved.
متن کاملFUGLEDE-PUTNAM THEOREM FOR w-HYPONORMAL OR CLASS Y OPERATORS
An asymmetric Fuglede-Putnam’s Theorem for w−hyponormal operators and class Y operators is proved, as a consequence of this result, we obtain that the range of the generalized derivation induced by the above classes of operators is orthogonal to its kernel.
متن کاملOn the Putnam-Fuglede theorem
We extend the Putnam-Fuglede theorem and the second-degree Putnam-Fuglede theorem to the nonnormal operators and to an elementary operator under perturbation by quasinilpo-tents. Some asymptotic results are also given.
متن کاملA Generalised Commutativity Theorem for Pk - Quasihyponormal Operators
For Hilbert space operators A and B, let δAB denote the generalised derivation δAB(X) = AX − XB and let 4AB denote the elementary operator4AB(X) = AXB−X. If A is a pk-quasihyponormal operator, A ∈ pk−QH, and B∗ is an either p-hyponormal or injective dominant or injective pk−QH operator (resp., B∗ is an either p-hyponormal or dominant or pk −QH operator), then δAB(X) = 0 =⇒ δA∗B∗(X) = 0 (resp., ...
متن کاملTHE FUGLEDE–PUTNAM THEOREM AND PUTNAM’S INEQUALITY FOR QUASI-CLASS (A, k) OPERATORS
An operator T ∈ B(H) is called quasi-class (A, k) if T ∗k(|T | − |T |)T k ≥ 0 for a positive integer k, which is a common generalization of class A. The famous Fuglede–Putnam’s theorem is as follows: the operator equation AX = XB implies A∗X = XB∗ when A and B are normal operators. In this paper, firstly we show that if X is a Hilbert-Schmidt operator, A is a quasi-class (A, k) operator and B∗ ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Inequalities and Applications
سال: 2006
ISSN: 1025-5834,1029-242X
DOI: 10.1155/jia/2006/47481